anaerobic digestion


Anaerobic gasification is a process performed by microorganisms in the absence of oxygen.

Wikipedia definition:

Anaerobic digestion is a collection of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to manage waste and/or to produce fuels. Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion. Anaerobic digestion occurs naturally in some soils and in lake and oceanic basin sediments, where it is usually referred to as "anaerobic activity". This is the source of marsh gas methane as discovered by Volta in 1776. The digestion process begins with bacterial hydrolysis of the input materials. Insoluble organic polymers, such as carbohydrates, are broken down to soluble derivatives that become available for other bacteria. Acidogenic bacteria then convert the sugars and amino acids into carbon dioxide, hydrogen, ammonia, and organic acids. These bacteria convert these resulting organic acids into acetic acid, along with additional ammonia, hydrogen, and carbon dioxide. Finally, methanogens convert these products to methane and carbon dioxide. The methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments. It is used as part of the process to treat biodegradable waste and sewage sludge. As part of an integrated waste management system, anaerobic digestion reduces the emission of landfill gas into the atmosphere. Anaerobic digesters can also be fed with purpose-grown energy crops, such as maize. Anaerobic digestion is widely used as a source of renewable energy. The process produces a biogas, consisting of methane, carbon dioxide and traces of other ‘contaminant’ gases. This biogas can be used directly as fuel, in combined heat and power gas engines or upgraded to natural gas-quality biomethane. The nutrient-rich digestate also produced can be used as fertilizer. With the re-use of waste as a resource and new technological approaches which have lowered capital costs, anaerobic digestion has in recent years received increased attention among governments in a number of countries, among these the United Kingdom (2011), Germany and Denmark (2011).

Source: Wikipedia - Anaerobic digestion

Wikipedia definition (similar term):

The following article is a comparison of aerobic and anaerobic digestion. In both aerobic and anaerobic systems the growing and reproducing microorganisms within them require a source of elemental oxygen to survive. In an anaerobic system there is an absence of gaseous oxygen. In an anaerobic digester, gaseous oxygen is prevented from entering the system through physical containment in sealed tanks. Anaerobes access oxygen from sources other than the surrounding air. The oxygen source for these microorganisms can be the organic material itself or alternatively may be supplied by inorganic oxides from within the input material. When the oxygen source in an anaerobic system is derived from the organic material itself, then the 'intermediate' end products are primarily alcohols, aldehydes, and organic acids plus carbon dioxide. In the presence of specialised methanogens, the intermediates are converted to the 'final' end products of methane, carbon dioxide with trace levels of hydrogen sulfide. In an anaerobic system the majority of the chemical energy contained within the starting material is released by methanogenic bacteria as methane. In an aerobic system, such as composting, the microorganisms access free, gaseous oxygen directly from the surrounding atmosphere. The end products of an aerobic process are primarily carbon dioxide and water which are the stable, oxidised forms of carbon and hydrogen. If the biodegradable starting material contains nitrogen, phosphorus and sulfur, then the end products may also include their oxidised forms- nitrate, phosphate and sulfate. In an aerobic system the majority of the energy in the starting material is released as heat by their oxidisation into carbon dioxide and water. Composting systems typically include organisms such as fungi that are able to break down lignin and celluloses to a greater extent than anaerobic bacteria. Due to this fact it is possible, following anaerobic digestion, to compost the anaerobic digestate allowing further volume reduction and stabilisation.

Source: Wikipedia - Comparison of anaerobic and aerobic digestion